
Review

C2M: configurable chemical middleware

Paul van der Vet1*, Hans E. Roosendaal2 and Peter A. T. M. Geurts3
1Department of Computer Science, University of Twente, Enschede, the Netherlands
2Department of Computer Science and Department of Philosophy and Social Sciences, University of Twente, Enschede, the Netherlands
3Department of Public Administration and Public Policy Studies, University of Twente, Enschede, the Netherlands

*Correspondence to:
Paul van der Vet, Department of
Computer Science, University of
Twente, PO Box 217, 7500AE
Enschede, the Netherlands.
E-mail: vet@cs.utwente.nl

Received: 29 October 2001

Accepted: 2 November 2001

Published online:

16 November 2001

Abstract

One of the vexing problems that besets concurrent use of multiple, heterogeneous resources

is format multiplicity. C2M aims to equip scientists with a wrapper generator on their

desktop. The wrapper generator can build wrappers, or converters that can convert data

from or into different formats, from a high-level description of the formats. The language

in which such a high-level description is expressed is easy enough for scientists to be able to

write format descriptions at minimal cost. In C2M, wrappers and documentation for

human reading are automatically obtained from the same user-supplied specifications.

Initial experiments demonstrate that the idea can, indeed, lead to the advent of user-

governed wrapper generators. Future research will consolidate the code and extend the

approach to a realistic variety of formats. Copyright # 2001 John Wiley & Sons, Ltd.

Keywords: plaintext files; data integration; molecular structure files; format conversion

Introduction

Plaintext databases constitute an important class of
information stores. They can be used on every
platform and most software has at least one way to
read or write data in plaintext format. However,
data processing and data integration are hindered
because even within disciplines there is no uniform
way to structure plaintext databases. Plaintext
databases with molecular structure information,
for example, exist in a wide variety of formats.
Ironically, many of these formats have started their
life as proposals for a standard format. Software for
converting formats exists. For the domains consid-
ered here, chemical and biomolecular information,
the Babel [2] system and SRS [11] are outstanding
examples.

A more general approach to format conversion
has been pioneered with the Chameleon system
[9,10]. Chameleon, building on experiences in com-
piler design [1], is a system that reads specifica-
tions of the source and target formats to generate
a converter or wrapper. Chameleon first converts
the source file into data expressed in an inter-
mediate format. In a second step, the data in the

intermediate format are converted into the target
format. This two-step approach is chosen because
this way the specifications of the source and tar-
get formats can be written and stored separately. As
a consequence, specifications are turned into sepa-
rate parts of the converter program. Also, by a
familiar argument [3], employing an intermediate
format reduces the number of converters needed.

Today, the environment has changed compared
to what it was when most formats and converters
were designed. Information stored in databases is
used for purposes format designers could not
foresee. As more and more tasks are supported by
software, data formats will multiply. Computing
will increasingly be done in distributed environ-
ments, where many resources like databases and
programs are available both in-house and remotely.
Certain tasks may need data stemming from
different sources to compare entries or to produce
a file with merged information.

A type of task that will gain popularity in the
near future involves interplay between a number of
resources (whether in-house or remote), like data
sources and programs to complete a particular task
(Figure 1). Where, not so long ago, the ideal was

Comparative and Functional Genomics

Comp Funct Genom 2001; 2: 371–375.
DOI: 10.1002 / cfg.124

Copyright # 2001 John Wiley & Sons, Ltd.



to be able to approach distributed data bases as
a single federated database [5], we now face the
challenge of federated information systems. Often,
there is no further need for the configuration, once
the task is done, and a different configuration will
be set up to address a new task. The problem is that
each resource will employ its own rules for input
and output. At each interface between the user’s
desktop and a resource there is a conversion
problem. Hard-coding a converter for every inter-
face is time-consuming and error-prone. Worse,
such pieces of code tend to become incomprehen-
sible as time passes, so that edits prompted by small
changes in the format are difficult, and eventually
impossible.

Researchers will want to set up configurations
with a limited lifetime at minimal cost, which rules
out solutions like hard-coding. By the same token,
standardisation becomes less adequate as a solution
to the data interoperability problem because for-
mats will multiply as tasks proliferate. Instead,
middleware is needed that can be easily and quickly
configured by a user to suit the needs at hand.

C2M builds on earlier efforts, in particular
Chameleon, to present a design for data inter-
operability that attempts to cope with the demands
of a constantly changing, distributed computing
environment. One of the habitats for which it is
typically designed is that of setting up middleware
for configurations quickly and easily. Another
typical use is that of quick construction of a filter

to obtain only part of the information from a
database, like only the annotations from a SWISS-
PROT record [12]. Finally, it is foreseeable that
some program could turn C2M specifications into
conformance checkers that would be useful in
preparing resources with fewer errors [7].

C2M is expressly designed to be middleware,
rather than a general-purpose program. The data
manipulations it can perform are limited to those
that one can reasonably demand from converters
that interface between a desktop application and
external resources. The philosophy of C2M is to use
it in a larger system such that each task is
performed by the program best suited to it.

The design of C2M

The mode of operation of the current version of
C2M is the following. Formats of external resources
are specified in separate plaintext files that can be
made and edited with any text editor. As for
Chameleon, conversion is done in two steps using
an intermediate format, called the native format in
C2M. The native format is also specified by the user
in a separate plaintext file. Each format is known by
a name that is unique within a C2M implementa-
tion. A program called the code generator turns
each of these format specifications into a program
module expressed in source code (Figure 2A). There
is a pre-defined piece of source code that embodies
the core of the converter. By compiling the modules
and the core, one obtains a converter that can
convert from and to each of the formats that have
been specified (Figure 2B). Thus, a configuration as
shown in Figure 1 needs a single C2M executable
compiled from specifications of all formats used.

C2M enhances and extends the Chameleon
approach in a number of ways.

(i) The native format is specified by the user in the
form of a simple and purely declarative
specification. There is no need to employ a
single specification for a given domain (like
molecular structure); setting up a native format
is sufficiently easy to allow a native format for
every particular task. The native format is a
container for the data read from a foreign
file. It is governed by a very simple data
schema, or ontology [6]. Each C2M ontology
defines a structure known as an annotated tree
or (in artificial intelligence) a frame system.

Figure 1. The environment: a federated information system
or coalition. Resources can be in-house, or remote

372 P. van der Vet et al.

Copyright # 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 371–375.



There is minimal commitment so that inter-

operability, for example using the OKBC

protocol [4], is minimally constrained.

(ii) C2M’s native format can be set up to support

operations on data other than simple conver-

sion, like producing a target file that contains

merged data from different, heterogeneous files

or comparing such data, for instance to

identify potential errors.

(iii) A special declarative language is used for file

format specifications that abstracts from a

particular implementation. The language can

even be used as a means to communicate a file

format without having the intention to gene-

rate a converter. The conventions for structur-

ing a format specification are dictated by the

particular demands of the code generator and

by agreements between parties that want to

exchange specifications. If specifications are

used purely locally, only the local implementa-
tion of the code generator remains as a source
of conventions. When exchange is desired, the
degree of standardisation of conventions is still
minimal.

(iv) A specification of a file format consists of two
parts. The first, syntactic part specifies the
structure of the file. A plaintext data file is a
sequence of strings. (The notion of string here
covers both multi-character strings and strings
that consist of a single character, say, a space
character.) Strings fall into one of two cate-
gories. The first category, that of meaningful
strings, comprises the strings that hold the
fields, in other words, the information pro-
per. The second category, that of landmarks,
embraces all strings that serve to identify and
delimit records and fields. The function of identi-
fier and delimiter is often combined. Land-
marks may identify and/or delimit groupings
like the sequence of fields that hold atom
information in a record that describes a mole-
cular structure. The second, semantic part
of a file format specification maps the inform-
ation as it is expressed in the file onto the
form determined by the native format. This
makes division of work possible, for instance the
content provider offers the syntactic part while
the user adds the semantic part. By means of an
appropriate combination of a native format and
the semantic part of a file specification, signifi-
cant efficiency gains can be obtained.

(v) Analysis of source files proceeds down to the
level of individual characters, so that there are
minimal restrictions on the kind of formats.
Technically, analysis proceeds down to the level
of individual bytes, although the conventions
we have employed in our experiments have not
yet made this explicit. The consequence is that a
simple extension of the conventions allows C2M
to handle control characters or Unicode with-
out sacrificing the simplicity of the language. In
other words, files other than plaintext files can
be read and written using the same design.

(vi) Extra constructs have been added to allow the
user to define his own character classes and
to handle constructions stemming from the
Fortran era, such as having to process a fixed
number of lines where the actual number has to
be read from the source file itself.

(vii) Specifications of formats (whether a file or

A

B

Figure 2. C2M mode of operation. To generate a converter:
A) C2M generates source code program modules from every
input file specification, B) and then compiles the modules
with the core

C2M: configurable chemical middleware 373

Copyright # 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 371–375.



native format) incorporate ample documenta-
tion to facilitate maintenance. Specifications
adhere to Knuth’s principle of literate pro-
gramming [8], meaning that code for the
program proper and human-readable docu-
mentation are produced from the same source
specification. This way, the documentation
always applies to the code as it is actually
executed.

Experiments

We are conducting experiments to assess the via-
bility of the approach. So far, the experiments are
confined to the converter functionality. Conversion
is done in three parts. Reading involves a parsing
step governed by the syntactic part of a file format
specification, followed by a semantic step governed
by the semantic part of a file format specification
(Figure 3). Writing is done in a single step, where
syntactic and semantic parts are used together
(Figure 4). We have concentrated on converters for
plaintext files with molecular structure information.
The source files with molecular structure informa-
tion were prepared by drawing structures with the
help of the ChemDraw package. Using Chem-
Draw’s export facility, these drawings were
exported as plaintext files in a number of formats.
The files were then converted by C2M, and the
resulting plaintext files were imported into Chem-
Draw to ascertain that the conversion was correct.
So far, we have only experimented with a few

formats. The results are promising but we also have
identified issues that have to be addressed in the
course of further development.

Our current implementation uses Prolog as
implementation language. We used the Quintus
Prolog implementation because it is one of the
fastest on the market. As a disadvantage, Quintus
code is portable over Windows and Unix platforms,
but not, for instance, over Mac platforms. We
found that conversion of a simple source file with
structure information for a molecule with a total of
1000 atoms and bonds into an equally simple target
file takes between 1.2 and 1.6 seconds, depending
on the complexity of the file. We have tentatively
concluded that scaling behaviour as the source file
grows appears to be linear. This is sufficiently fast
for many applications. As we expected, the parsing
step is the rate-determining step of the whole pro-
cess. Significant efficiency gains are possible even
when Prolog remains the programming platform.

Discussion

Preliminary experiments indicate that the C2M
approach presents a viable way to address problems
of conversion. We now want to explore a greater

Figure 3. C2M conversion: reading. Reading is done in two
steps, corresponding to grammar and semantic bindings

Figure 4. C2M conversion: writing. Writing is done in a
single step. The specifications for reading are re-used to
whatever extent is possible

374 P. van der Vet et al.

Copyright # 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 371–375.



variety of formats to come up with a version that
can be put to real-life tasks. In the course of our
experiments, we have noted a number of points for
future research.

The main problem we are working on now
involves the so-called instantiation functions. These
functions map strings as they are found in a file
onto representations that conform to native format
while reading, or vice versa while writing. Instantia-
tion functions have to be hard-coded into the
predefined core of the converter. This means that a
user cannot extend the set of instantiation functions
in a way other than combining existing functions. It
is not clear what criteria must be used to assess the
value of an existing set of instantiation functions
because C2M is designed for a distributed environ-
ment and there may well be other programs that
can handle difficult mapping tasks. For example, an
elaborate set of functions for numbers and dates is
an obvious candidate for inclusion in C2M (but co-
ordinate transformation is another case). There are
mathematical packages on the market that per-
form co-ordinate transformations efficiently by
means of built-in routines. Duplication of these
routines within C2M is of doubtful value. In the
longer term, only familiarity with a great variety of
formats will indicate which set is satisfactory.

Another point of some concern is efficiency. The
current implementation of the code generator is not
optimised for speed. Code generation takes several
seconds for each user specification. The process can
be performed significantly faster. The generator
does, however, incorporate measures to enhance the
efficiency of the converter.

Finally, we want to extend C2M to handle merg-
ing and comparison tasks in addition to conversion
tasks. As we explained above, C2M is in principle
equipped to handle these tasks because they operate

on a common native format. The first step would be
to define a language that enables a user to specify
merging and comparison tasks. The second step
would then be to extend the code generator and the
core program to implement these tasks.

In sum, we believe that C2M paves the way for a
flexible system able to convert, merge and compare
data in a web-based, rapidly changing environment.

References

1. Aho AV, Ullman JD. 1979. Principles of Compiler Design.

Addison-Wesley: Reading MA

2. Babel: http://smog.com/chem/babel/

3. Barnard JM. 1990. J Chem Inf Comp Sci 30: 81–96.

4. Chaudri VK, Farquhar A, Fikes R, Karp PD, Rice JP. 1998.

OKBC: A programmatic foundation for knowledge base

interoperability. In Proceedings of the 15th National Con-

ference on Artificial Intelligence (AAAI-98), Mostow J, Rich

C (eds). AAAI Press: Menlo Park, CA; 600–607.

5. Gray PMD, Kemp GJL. 2000. Federated database technol-

ogy for data integration: lessons from bioinformatics. In

Electronic Collaboration in Science, Koslow SH, Huerta MF

(eds). Lawrence Erlbaum: Mahwah NJ; 45–72.

6. Gruber TR. 1993. A translation approach to portable

ontology specifications. Knowledge Acquisition 5: 199–220.

7. Karp PD. 2001. Many Genbank entries for complete

microbial genomes violate the Genbank standard. Comp

Funct Genom 2: 25–27.

8. Knuth DE. 1992. Literate Programming. Center for the

Study of Language and Information, Stanford University:

Palo Alto, CA

9. Mamrak SA, Kaelbling MJ, Nicholas CK, Share M. 1989.

Chameleon: a system for solving the data-translation

problem. IEEE Transactions on Software Engineering 15:

1090–1108.

10. Mamrak SA, O’Connell CS, Barnes J. 1994. The Integrated

Chameleon Architectures. Prentice Hall: Englewood Cliffs,

NJ.

11. SRS: http://www.cmbi.kun.nl/srs6 or http://srs.ebi.ac.uk

12. SWISS-PROT: http://www.expasy.ch/sprot/sprot-top.html

C2M: configurable chemical middleware 375

Copyright # 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 371–375.


